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‘IYansmissioln-LineTheory Approach to Solution of
State Equations for Linear-Lumped Circuits

Antonije R. Djordjevid, Branimir D. Reljin,
Dejan V. To~i6, and Tapan K. Sarkar

Abstract—Linea]r-htmped circuits containing capacitors andlor induc-
tors are described by differential equatious. In computer-aided circuit
analysis, these equations are dtscretized in time, thus being reduced
to approximate formulas involving samples of voltages and currents.
It is shown that these relations can be interpreted as exact equatious
for networks containing transmission lines. Hence, some features of the
approximateformulasgain a clear physical interpretation. In particular,
convergence and energy balance properties of the formulas become
obvious, confirming advantages of the trapezoidal rule over all other
formulas.

I. INTRODUCTION

It is a common practice in microwave engineering to replace a
lumped capacitor, of capacitance C, by an electrically short, open-
circuited transmission-line section. If the characteristic impedance of

this line is Z., its length 1 and wave propagation velocity c (assuming
the line to be lossless, uniform, and distortionless), then

~ = l/(CZ. ) = T/z. (1)

where ~ = 1/(.is the wave propagation time along the line. Similarly,

a lumped inductcr of inductance L is substituted by an electrically
short, short-circuited transmission-line section, so that

L = TZ.. (2)

Note that the substitutions given by (1) and (2) introduce an error.
For example, the impedance of a capacitor is

Z~ = –j/(mC’) (3)

and the input impedance of an open-circuited transmission line is

Zt = –jZCcot(d~). (4)

These two functions are osculating as LJ -+ O, but they differ more
and more as the frequent y increases. A 5 ‘ZOdifference occurs when
the line length is A/8 (where A is the wavelength), but the capacitive
character of Zt is retained up to A/4. As a conclusion, for a good

approximation, the transmission line should be as short as possible.
A similar reasoning is valid for an inductor and its short-circuited
transmission-line equivalent.

On the other hand, in the lumped-circuit theory, linear capacitors
and inductors earl be described in the time domain by differential re-
lations between their voltages and currents. For a given excitation, the
state of the whole circuit can be described by their capacitor voltages,
inductor currents, and time derivatives, which is the well-known state-

equation method In programs for computer-aided circuit analysis,
these differential equations are discretized in time and reduced to
formulas that involve several samples of voltages and currents [1].
Each of these formulas (further referred to as discrete formulas) is
considered as an approximation to the differential equation, and the

Manuscript received June 11, 1995; rewsed November 27, 1995.
A. R. Djordjewc, B, D. Reljm. and D. 1’. ToSic are with the School of

Electrical Engineering, Utuversity of Belgrade, 11001 Belgrade, Yugoslavia.
T, K. Sarkar is with the Department of Electrical and Computer Engineer-

ing, Syracuse University, Syracuse, NY 13244-1240 USA.
Publisher Item Identifier S 0018-9480(96)01559-1.

solution obtained using a formula is an approximation to the true

solution of the circuit.
For a transmission line, the time-domain samples of voltages and

currents can exactly be related taking the propagation delay and
reflections into account [2]. The idea of this paper is to show that
replacing a lumped capacitor (or an inductor) by a transmission-line
section, according to (1) and (2), is equivalent to approximating the

differential equation by a discrete formula, which is well known as
the trapezoidal rule. Hence, this discrete formula is interpreted as an
exact formula for the transmission line.

Based on this substitution, physical models for some popular
discrete formulas are developed. From these models. convergence and

energy balance properties of the dkcrete formulas become obvious.
In the paper, the analysis will be given for capacitors and the results

for inductors can be deduced using the duality principle.

II. TIME-DOMAINTRANSMISSIONLINE ANALYSIS

Let us consider the transmission line approximating a lumped
capacitor, characterized by (1), and relate samples of the voltage and
current at one transmission-line port while the other port is open-
circuited. If the :-axis is used to measure the distance along the line
from the input port, the general solution of telegraphers’ equations

for the voltage (I!) and current (i), as a function of time (t)and J, is

U(2, t) =f+(t – :/c) + f–(t+ 2/(’)

= L!+(2, t)+v-(:,t) (5)

=i+(:. t)+i–(:, t) (6)

where .f+ and .f– are arbitrary functions describing the incident and
reflected waves, respectively. Setting in these equations J = O, we

obtain

L,(O.f) =f+(f) + f–(t) (7)

Zci(O, t) =.f+(f) – ~–(t). (8)

Adding these two equations we obtain

j_+(f) = ~[11(0, t)+ Zci(O. t)] (9)

where we have the voltage of the wave launched from the input port.

Subtracting (8) from (7) yields

((0, t) = 2~–(f) + Z,i(O, t) (lo)

which is a Th6venin equivalent description of the transmission line,
looking into the input port [2], [3]. A similar pair of equations can
be derived for the other line end.

In the case considered, the incident wave, excited at the line input,
travels along the line without distortion, strikes the far end after a
time interval r, gets totally reflected at the open end, and arrives

back at the input port after another interval ~. Hence, for : = O

f-(t) = f+(f - 2T). (11)

If we uniformly sample the voltage and current at the transmission-
line input at a time step At = 2 T, from the above equations’ we
have

11(0, nllf) = ~110,(n – I)At]+ ZCi[O. (n – I)At]

+ ZCi(O, nllt) (12)
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where II is an integer. Equation (12) relates voltages and currents at
the generator end at two adjacent time steps. (n – 1 )Lt and ItAt.
Changing the notation, instead of (12) we can write

~,[,~1= ,,{,-1) +2 i(n–1) +Zc,t,,). (13)

where ( and ~ denote the voltage and current at the transmission-line
input, and the superscripts denote the time steps. Note that ( 1) can
now be rewritten as

z<.= At/(tC). (14)

III. FIRST-ORDERDISCRETEFORMULASAND
LUMPED-ELEMENTCOMPANIONMODELS

Consider a linear, time-invariant lumped capacitor. Its current and
voltage are related by

C1l’(f)
i(t)=cf=. (15)

The first-order discrete formulas relate currents and voltages at two
adjacent time steps, f (1?) and $” +1). Generally, these fOrmUlaS Can

be written in the form

[n)1 _ ,,(-1~ = [flljf”) +,,7j(’’-]AtAc/c (16)

where ~~1 and ri~ are constants such that (I1 + 02 = 1 [1]. For n 1 = 1

and ((2 = O, we obtain

,,(1?)_ ~,(1$–1)
= lJ’’’c/c (17)

which is known as the backward Euler (corrector) formula. It relates

the voltage and current at the present time step (t(”)), and ?I(”– 1’
is known as it belongs to the previous time step Equation (17) m
the same as the relation for the voltage and current (at the present
time step) for a voltage generator of electromotive force L[” – 1) and
resl stance 4t/ C This generator M referred to as the companion
model for (17) [1]. For al = O and a~ = 1, we obtain

,,(10 – 1(’’-1’ = 1(’’-’’ltfc (18)

which M known as the forward Euler (predictor) formula. It contains
only the voltage at the present time step, and t~(1?–1) and if’’–’)
are known from the previous time step. The compamon model for
( 18) is an ideal voltage generator, of electromotive force L!(”– 11 +
i(” –‘’ At/C’ (and zero resistance). Finally, for n 1 = C12= ().5, we

obtain

~,(,,1_ ,,(,, -1) = [i(l) + j(~-l)]&/(2c)
(19)

which M the trapezoidal integration rule, often used in circuit analysis
[4], [5]. The companion model for (19) is a voltage generator,
of electromotive force t,(” – 1) + ;’”’1 ]At/( 2G’ ), and resistance

Lt/(2c).
The above-mentioned companion models enable simplifications in

the cn-cuit analysis [1], but they do not clarlfy the nature of these
formulas.

IV. FIRST-ORDER DISCRETE FORMULAS

AND TRANSMISSION-LINE MODELS

In the light of Sections II and III, we will derive here a
transmission-hne model for a capacitor approximately described
by (16), so that (16) gives an exact description for that model.
Consider an open-circuited transmission line. sketched in Fig. 1. The
propagation time along the line is T = ~t/2and its characteristic

i
o

+4’

v I/e Vt 1 Zc open

)-Q

Fig 1 Transmission-line model for a capacitor and first-order discrete
formulas

impedance is Z,.. A resistor of resistance R is connected m ser]es
with the line. Our objective is to find Z, and R so to satisfy (16).

From (13), the voltage and current at the transmission-line termi-
nals are related by

1$”~ = (’;’’ -1)+ zci~’z)+ z,.;$~-1) (20)

where the transmission-line voltage tI/ is related to the voltage at the
network terminals by

1< = [I —Ri (21)

and i = if Substituting t{ given by (21) for both time steps [t(”)
and t(n–l] ] into (20), we obtain

~,(rl) = ~,(1-1)
+ (ZL +R)i(r’) + (Zc.– ll);(~-1),(22)

Comparing (16) and (22), we obtain al At/C = 2, + R and
a2At/C’ = Z,, — R. Since nl + (12 = 1 we have further Z, =

At/(2 C), which is the same as (14), and R = (C{I – az)At/(2C).

In particular, for the backward Euler formula R = 2. >0 and for
the forward Euler formula R = – Z, < 0. For the trapezoidal rule

(and only for this formula) R = O and the model consists only of
a (lossless) transmission line, the same as described in connection
with (13).

These transmission-line models can easily and completely explain
the stability region of the first-order formulas. This region is defined
m [1] based on solving for the response of a simple serial circuit
consisting of an ideal step-voltage generator, resistor (of resistance
R,). and capacitor (of capacitance C). The forward Euler formula
is stable prowded the time step At M smaller than 2R. C. Our
transmission-line model confirms this conclusion. The total serial
resistance of the circuit obtained by substituting the capacitor by
the model of Fig. 1 is R. – Z, = R, – At/(2 C), and it is positive
if R. > _Jt/(2C), i.e., if &t < 2R, C. If the total resistance is
negative, the response of the circuit blows up.

The backward Euler formula is stable for the above example if
R. > – At/( 2C ), while the trapezoidal formula is stable if R. >0.

However, a stable formula does not necessarily give good results,
as will be demonstrated by the following example. Consider a simple
resonant, lossless circuit, consisting of a capacitor [C = ( l/2ir ) F]
and an inductor [L = ( l/2n- ) H]. The initial conditions for the
capacitor voltage and for the inductor current are L ( O) = O and

i(O) = ~“ = 1 A, respectively. We wmh to solve for the voltage
of the free response, 1(t), t > 0. The exact response is sinusoidal,
L(t) = IO ~sin 2nt/T, where T = 27rm is the period.

If the forward Euler formula is applied to this circuit, with a time
step Jt = T/50,the computed response diverges very rapidly. as
shown in Fig. 2. This can easily be explained by considering the
transmission-line models for the capacitor and the inductor, since the
circuit contains negative resistances, and It M thus an active circuit.

If the backward Euler formula is applied, the response is “stable,”
but wrong. because the envelope of the voltage decays very fret, as
shown in Fig. 3. Again, the transmission-line models predict such
a result, because the (positive) resistances introduce losses, and the
resulting quality factor of the circuit 1s low,
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Fig. 2. Response of an L~ circuic — obtained by the forward Euler
formula, ● ● ● ● ● exact.
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Fig. 3. Response of an LC circuit: — obtained by the backward Euler
formula, ● ● ● ● ● exact.

Finally, the result obtained using the trapezoidal formula, shown
in Fig, 4, has a stable amplitude, as should be expected for a
lossless, passive circuit. The only visible error is in the period.

This error is also predicted by our transmission-line models. Re-
ferring to (4) and a dual equation for the inductor, the period of
free oscillations of the circuit formed by replacing the inductor

and capacitor by their transmission-line models is given by T. =
mAt/ arctan( M/2~), which is always greater than the exact
period, T = 2rTd~. However, the difference between T. and T
decays with the time step as (At)2.

V. MODELSFOR HIGHER-ORDERFORMULAS

Among a variety of higher-order formulas [1], transmission-line
models are considered here only for backward differentiation correc-
tor’ formulas (known as Gear’s corrector formulas) because they have
found their application in the circuit analysis [4]. When applied to
a capacitor, backward differentiation corrector formulas can be put
into the general form

(23)

1.0

0.5

0.0

-0.5

-1.0

Fig. 4.
****

v [v]

Response of an LC circuic — obtained by the trapezoidal rule,
● exact.

where k is the formula order. In addition

~.,=o (24)
J=o

which follows from the condition that a constant voltage must result
in a zero current. Since the capacitor current in (23) is given in the
form of a sum, a parallel connection of one-port networks is implied.
Substituting (24) into (23) yields

(25)

Comparing (25) with (16), each network can be identified as the
network of Fig. 1, with R, = Z.J, Z~J = At/(2CaJ) and TJ =
jAt/2, j=l, .,k.

As an example, the second-order Gear’s formula (k = 2) reads

~(~) = l_q{,(n) + ~Utw-’) - ~~n-2)]c’/(2At) (26)

and the transmission-line model (shown in Fig. 5) consists of a
parallel combination of two networks of the form shown in Fig. 1.
The first network involves a positive resistance and a transmission

line of a positive characteristic impedance and transit time At/2. The
second network involves a negative resistance and a transmission
line of a negative characteristic impedance and transit time At. It
can be easily verified that the input admittance of the model of Fig.
5 has a nonnegative real part for all frequencies. Hence, formula
(26) belongs to the class of “stable” formulas. When applied to a
passive, lossless LC circuit, a similar behavior is observed as for the
backward Euler formula. The response is damped, although with a
much smaller damping factor than for the backward Euler formula.

W. CONCLUSION

In computer-aided circuit analysis, differential voltage-to-current
relations describing capacitors and inductors are discretized in time,
thus being reduced to approximate formulas involving samples of
voltages and currents. Frequently used formulas are the forward and
backward Euler formulas, the trapezoidal rule, and backward differ-
entiation corrector formulas (Gear’s formulas). For these formulas,
exact models were designed that contain electrically short sections of
lossless transmission lines and lumped positive or negative resistors,
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Fig. 5. Transmission-llne companion model for a capacitor and second-order
backward (tIfferentlation corrector formula

except for the trapezoidal formula for which there are no resistors.
These models enable a clear physical insight into convergence and
energy balance properties of these discrete formulas. Transmission-
line models that involve resistances imply formulas with m energy
imbalance. As a result, for some formulas (e.g., the backward Euler
formula or Gear’s second-order formula) capacitors and inductors
behave like lossy elements. This feature yields a “stable” response,
but prone to large errors for low loss or lossless circuits. For some

other formulas (e.g.. the forward Euler formula) capacitors and
inductors behave like active elements (generators), and the clrctut
response may easily diverge

The only formula that has a proper energy balance Mthe trapezoidal
rule. The corresponding model for a capacitor is an open-circuited
Iossless transm~ssion-line section, while the model for an inductor
is a short-circuited section and no resistors are involved. The hne
lengths are shortest possible for a discretized analysis, as the transit
time equals one half of the time step.

These models clearly explain why the trapezoidal formula is
superior to other formulas in the analysis of low loss and lossless

circuits, We also note that these models are even used m microwave
engineering to replace capacitors and inductors.

According to the analysis presented, we want to emphasize that
the trapezoidal algorithm is the only one acceptable for the general
purpose, computer-aided (numerical) circuit analysis.
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Error Bound for the Approximate Fourier Transformation
Relationship for Nonuniform Transmission Lines

Roland Finkler and Rolf Unbehauen

Abstrezct-n this paper, an error bound is presented for Bolinder’s well-
known approximate formula [1] relating the input reflection coefficient
and the local reflectivity parameter of a Iossless nonuniform transmission
line (NTL) via the Fourier transformation. Despite modern computers
allowing an accurate analysis, Bolinder’s formula is still of interest. First,
it makes possible an approximate synthesis of NTL’s which can he used
in a subsequent optimization. Second, it supports an intuitive grasp for
the electrical properties of NTL’s.

1, EXACT ANALYSIS

We consider a lossless nonuniform transmission line (NTL) with

the (Laplace transforms of) voltage and current at the electrical
position [2] L. t‘(:. p) and 1(:, p), related by the telegrapher’s
equations

with r denoting the electrical length and tbe differentiable funct]on
11”(;) the characteristic impedance. Let 2(p) = T‘(O. p )/1( O, ],)
be the input impedance of the NTL when terminated in the ohmic
resistance RL [Fig. l(a)], i.e.. T“(~. ]))/1( T.]7) E RL Thus

r(l)) =
Z(p) – R

Z(p) + R
(2)

M the input reffectlon coefficient with the reference resistance R.

In case of

R= H’(0).

RJ =~i-(T) (3)

one gets [3] i

I
.,.~:,,—l

(1::,,
/

(l: J,,+l(–l)]L
[) :2.

PA’ . F’(;2,, +I)
#—ju2(:1-:2+:1-–:2,,+:2.+1)

with the local reflectiwty parameter

(4)

(5)

This result can be interpreted as follows. The reflected wave b(jti )
at the input port may be wewed as being composed of infinitesimal
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